A modular self-assembly approach to functionalised β-sheet peptide hydrogel biomaterials.
نویسندگان
چکیده
Two complementary β-sheet-forming decapeptides have been created that form binary self-repairing hydrogels upon combination of the respective free-flowing peptide solutions at pH 7 and >0.28 wt%. The component peptides showed little structure separately but formed extended β-sheet fibres upon mixing, which became entangled to produce stiff hydrogels. Microscopy revealed two major structures; thin fibrils with a twisted or helical appearance and with widths comparable to the predicted lengths of the peptides within a β-sheet, and thicker, longer, interwoven fibres that appear to comprise laterally-packed fibrils. A range of gel stiffnesses (G' from 0.05 to 100 kPa) could be attained in this system by altering the assembly conditions, stiffnesses that cover the rheological properties desirable for cell culture scaffolds. Doping in a RGD-tagged component peptide at 5 mol% improved 3T3 fibroblast attachment and viability compared to hydrogel fibres without RGD functionalisation.
منابع مشابه
Self-Healing, Self-Assembled β-Sheet Peptide–Poly(γ-glutamic acid) Hybrid Hydrogels
Self-assembled biomaterials are an important class of materials that can be injected and formed in situ. However, they often are not able to meet the mechanical properties necessary for many biological applications, losing mechanical properties at low strains. We synthesized hybrid hydrogels consisting of a poly(γ-glutamic acid) polymer network physically cross-linked via grafted self-assemblin...
متن کاملReversible Hydrogel–Solution System of Silk with High Beta-Sheet Content
Silkworm silk has been widely used as a textile fiber, as biomaterials and in optically functional materials due to its extraordinary properties. The β-sheet-rich natural nanofiber units of about 10-50 nm in diameter are often considered the origin of these properties, yet it remains unclear how silk self-assembles into these hierarchical structures. A new system composed of β-sheet-rich silk n...
متن کاملA peptide from human semenogelin I self-assembles into a pH-responsive hydrogel.
The peptide GSFSIQYTYHV derived from human semenogelin I forms a transparent hydrogel through spontaneous self-assembly in water at neutral pH. Linear rheology measurements demonstrate that the gel shows a dominating elastic response over a large frequency interval. CD, fluorescence and FTIR spectroscopy and cryo-TEM studies imply long fibrillar aggregates of extended β-sheet. Dynamic light sca...
متن کاملAnomalous Conformational Instability and Hydrogel Formation of a Cationic Class of Self-Assembling Oligopeptides
A detailed understanding of themechanistic principles which govern peptide and protein selfassembly is of considerable biomedical and biotechnological importance. Owing to the diversity of peptide and protein sequences which have been shown to aggregate into ordered structures, the ability to self-assemble is now recognized as an inherent feature of the polypeptide backbone. It is therefore of ...
متن کاملProteolytic stability of amphipathic peptide hydrogels composed of self-assembled pleated β-sheet or coassembled rippled β-sheet fibrils.
Hydrogel networks composed of rippled β-sheet fibrils of coassembled D- and L-Ac-(FKFE)2-NH2 amphipathic peptides exhibit proteolytic stability and increased rheological strength compared to networks of self-assembled L-Ac-(FKFE)2-NH2 pleated β-sheet fibrils. Modifying the ratios of l and d peptides in the coassembled rippled β-sheet fibrils alters the degradation profiles of these hydrogel net...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Soft matter
دوره 12 6 شماره
صفحات -
تاریخ انتشار 2016